nnmnkwii.preprocessing.minmax_scale_params¶
-
nnmnkwii.preprocessing.
minmax_scale_params
(data_min, data_max, feature_range=(0, 1))[source]¶ Compute parameters required to perform min/max scaling.
Given data min, max and feature range, computes scalining factor and minimum value. Min/max scaling can be done as follows:
x_scaled = x * scale_ + min_
- Parameters
x (array) – Input data
data_min (array) – Data min for each feature dimention.
data_max (array) – Data max for each feature dimention.
feature_range (array like) – Feature range.
- Returns
Minimum value and scaling factor for scaled data.
- Return type
Examples
>>> from nnmnkwii.preprocessing import minmax, minmax_scale >>> from nnmnkwii.preprocessing import minmax_scale_params >>> from nnmnkwii.util import example_file_data_sources_for_acoustic_model >>> from nnmnkwii.datasets import FileSourceDataset >>> X, Y = example_file_data_sources_for_acoustic_model() >>> X, Y = FileSourceDataset(X), FileSourceDataset(Y) >>> data_min, data_max = minmax(X) >>> min_, scale_ = minmax_scale_params(data_min, data_max) >>> scaled_x = minmax_scale(X[0], min_=min_, scale_=scale_)