nnmnkwii.preprocessing.minmax_scale¶
- 
nnmnkwii.preprocessing.minmax_scale(x, data_min=None, data_max=None, feature_range=(0, 1), scale_=None, min_=None)[source]¶ Min/max scaling for given a single data.
Given data min, max and feature range, apply min/max normalization to data. Optionally, you can get a little performance improvement to give scaling factor (
scale_) and minimum value (min_) used in scaling explicitly. Those values can be computed bynnmnkwii.preprocessing.minmax_scale_params().Note
If
scale_andmin_are given,feature_rangewill be ignored.Parameters: - x (array) – Input data
 - data_min (array) – Data min for each feature dimention.
 - data_max (array) – Data max for each feature dimention.
 - feature_range (array like) – Feature range.
 - scale_ ([optional]array) – Scaling factor.
 - min_ ([optional]array) – Minimum value for scaling.
 
Returns: Scaled data.
Return type: array
Raises: ValueError– If (data_min,data_max) or (scale_andmin_) are not specified.Examples
>>> from nnmnkwii.preprocessing import minmax, minmax_scale >>> from nnmnkwii.util import example_file_data_sources_for_acoustic_model >>> from nnmnkwii.datasets import FileSourceDataset >>> X, Y = example_file_data_sources_for_acoustic_model() >>> X, Y = FileSourceDataset(X), FileSourceDataset(Y) >>> data_min, data_max = minmax(X) >>> scaled_x = minmax_scale(X[0], data_min, data_max)