nnmnkwii.preprocessing.meanstd¶
-
nnmnkwii.preprocessing.
meanstd
(dataset, lengths=None, mean_=0.0, var_=0.0, last_sample_count=0, return_last_sample_count=False)[source]¶ Mean/std-deviation computation given a iterable dataset
Dataset can have variable length samples. In that cases, you need to explicitly specify lengths for all the samples.
- Parameters
dataset (nnmnkwii.datasets.Dataset) – Dataset
lengths – (list): Frame lengths for each dataset sample.
mean_ (array or scalar) – Initial value for mean vector.
var_ (array or scaler) – Initial value for variance vector.
last_sample_count (int) – Last sample count. Default is 0. If you set non-default
mean_
andvar_
, you need to setlast_sample_count
property. Typically this will be the number of time frames ever seen.return_last_sample_count (bool) – Return
last_sample_count
if True.
- Returns
- Mean and variance for each dimention. If
return_last_sample_count
is True, returnslast_sample_count
as well.
- Return type
Examples
>>> from nnmnkwii.preprocessing import meanstd >>> from nnmnkwii.util import example_file_data_sources_for_acoustic_model >>> from nnmnkwii.datasets import FileSourceDataset >>> X, Y = example_file_data_sources_for_acoustic_model() >>> X, Y = FileSourceDataset(X), FileSourceDataset(Y) >>> lengths = [len(y) for y in Y] >>> data_mean, data_std = meanstd(Y, lengths)