nnmnkwii.preprocessing.scale¶
-
nnmnkwii.preprocessing.
scale
(x, data_mean, data_std)[source]¶ Mean/variance scaling.
Given mean and variances, apply mean-variance normalization to data.
- Parameters
x (array) – Input data
data_mean (array) – Means for each feature dimention.
data_std (array) – Standard deviation for each feature dimention.
- Returns
Scaled data.
- Return type
array
Examples
>>> from nnmnkwii.preprocessing import meanstd, scale >>> from nnmnkwii.util import example_file_data_sources_for_acoustic_model >>> from nnmnkwii.datasets import FileSourceDataset >>> X, Y = example_file_data_sources_for_acoustic_model() >>> X, Y = FileSourceDataset(X), FileSourceDataset(Y) >>> lengths = [len(y) for y in Y] >>> data_mean, data_std = meanstd(Y, lengths) >>> scaled_y = scale(Y[0], data_mean, data_std)
See also