nnmnkwii.preprocessing.minmax_scale¶
-
nnmnkwii.preprocessing.
minmax_scale
(x, data_min=None, data_max=None, feature_range=(0, 1), scale_=None, min_=None)[source]¶ Min/max scaling for given a single data.
Given data min, max and feature range, apply min/max normalization to data. Optionally, you can get a little performance improvement to give scaling factor (
scale_
) and minimum value (min_
) used in scaling explicitly. Those values can be computed bynnmnkwii.preprocessing.minmax_scale_params()
.Note
If
scale_
andmin_
are given,feature_range
will be ignored.- Parameters
x (array) – Input data
data_min (array) – Data min for each feature dimention.
data_max (array) – Data max for each feature dimention.
feature_range (array like) – Feature range.
scale_ ([optional]array) – Scaling factor.
min_ ([optional]array) – Minimum value for scaling.
- Returns
Scaled data.
- Return type
array
- Raises
ValueError – If (
data_min
,data_max
) or (scale_
andmin_
) are not specified.
Examples
>>> from nnmnkwii.preprocessing import minmax, minmax_scale >>> from nnmnkwii.util import example_file_data_sources_for_acoustic_model >>> from nnmnkwii.datasets import FileSourceDataset >>> X, Y = example_file_data_sources_for_acoustic_model() >>> X, Y = FileSourceDataset(X), FileSourceDataset(Y) >>> data_min, data_max = minmax(X) >>> scaled_x = minmax_scale(X[0], data_min, data_max)